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Static versus dynamic approach
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State repression and dissidence nexus

* The ‘punishment puzzle’ (e.g., Davenport 2007)

* Dissidence-repression interactions as strategic processes (e.g.,
Pierskalla 2010)

Patterns in protest as observable implications of repression-dissidence
interactions (Tarrow 2011). → Dynamic approach
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Protest waves

Figure: Number of protest events per year (1997–2021) in Zimbabwe, Côte
d’Ivoire, and Somalia, obtained from Raleigh et al. (2010).
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Cycles of Contention
Adopted from Tarrow (2011) and Demirel-Pegg (2011)
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Cycles of Contention
Adopted from Tarrow (2011) and Demirel-Pegg (2011)
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Expectation: Patterns in protest events repeat. Similarities in sequences of protest
events serve to predict the future course in the protest cycle.
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Data

Figure: Protest events in 2015 in Africa, and Asia and the Pacific Group, obtained
from Raleigh et al. (2010).
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How to measure similarities?

→ Time series clustering based on time warped sequences, using
K-means algorithm.

Euclidean Distance Dynamic Time Warping

X X

Y Y

Figure: Comparing Euclidean Distance with Dynamic Time Warping–Adopted
from Chadefaux (2021, 7) and Keogh and Ratanamahatana (2005, 359).
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Time series clustering

Figure: The obtained six clusters with window length three months.

→ Use as dummy set, assign each observation to one cluster
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Time series forecasting
Adopted from Kotu (2019)

Autoregressive Integrated Moving Average (ARIMA): linear
combination of p past observations, yt = θ0 + θ1yt−1 + θ2yt−2 + ...+ θpyt−p

* ARIMA, p = 1

* ARIMA, optimized

* ARIMAX, optimized and additional X which is dummy set of
extracted clusters

Evaluation score:

* Weighted mean squared error (WMSE): Mean squared error
weighted by actual values on outcome, number of protest events

11 / 16



Literature review Theory Data & methods Findings

Prediction accuracy overall

Model WMSE

ARIMA(1,0,0) 4197.140778
ARIMA(optimized) 3240.739375
ARIMAX 3071.106989

Table: Weighted mean squared error for ARIMA(1,0,0), ARIMA(optimized)
and ARIMAX.
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Prediction accuracy per country
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Well performing ARIMAX

Figure: Predictions (ARIMA and ARIMAX) and actual values for Congo.
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Poorly performing ARIMAX

Figure: Predictions (ARIMA and ARIMAX) and actual values for Myanmar.
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Thank you
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