Theory 000 Data & methods 0000 Findings 00000

Temporal Patterns in Protest Events

Hannah Frank frankh@tcd.ie

Department of Political Science Trinity College Dublin

December 1, 2022

Established by the European Commission

Theory

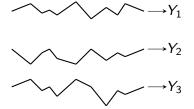
Data & methods 0000 Findings

STATIC VERSUS DYNAMIC APPROACH

$$X_1, X_2, X_3, X_4, \dots \longrightarrow Y_1$$
$$X_1, X_2, X_3, X_4, \dots \longrightarrow Y_2$$

$$X_1, X_2, X_3, X_4, \dots \longrightarrow Y_3$$

Covariate sets as unit of analysis



Time sequences as unit of analysis

Data & methods 0000

STATE REPRESSION AND DISSIDENCE NEXUS

- * The 'punishment puzzle' (e.g., Davenport 2007)
- * Dissidence-repression interactions as strategic processes (e.g., Pierskalla 2010)

Patterns in protest as observable implications of repression-dissidence interactions (Tarrow 2011). \rightarrow Dynamic approach Theory 000 Data & methods 0000 Findings 00000

PROTEST WAVES

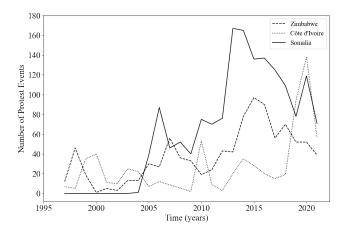


Figure: Number of protest events per year (1997–2021) in Zimbabwe, Côte d'Ivoire, and Somalia, obtained from Raleigh et al. (2010).

Theory ●00 Data & methods 0000 Findings 00000

Cycles of Contention

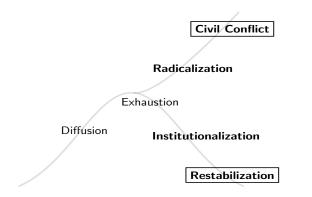
Adopted from Tarrow (2011) and Demirel-Pegg (2011)

Exhaustion Diffusion Radicalization/ Institutionalization

Theory 0●0 Data & methods 0000 Findings 00000

Cycles of Contention

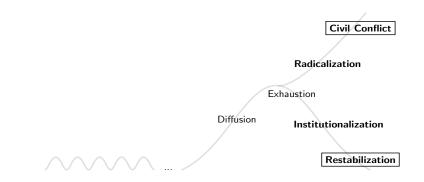
Adopted from Tarrow (2011) and Demirel-Pegg (2011)



Theory 00● Data & methods 0000 Findings 00000

Cycles of Contention

Adopted from Tarrow (2011) and Demirel-Pegg (2011)



Expectation: Patterns in protest events repeat. Similarities in sequences of protest events serve to predict the future course in the protest cycle.

heory

Data & methods ●000 Findings 00000

Data

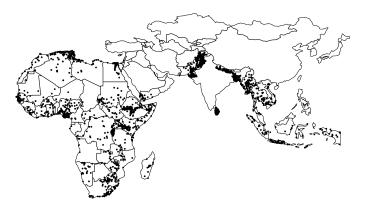


Figure: Protest events in 2015 in Africa, and Asia and the Pacific Group, obtained from Raleigh et al. (2010).

Data & methods ○●○○ Findings 00000

HOW TO MEASURE SIMILARITIES?

 \rightarrow Time series clustering based on time warped sequences, using K-means algorithm.

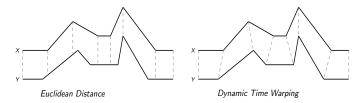


Figure: Comparing Euclidean Distance with Dynamic Time Warping–Adopted from Chadefaux (2021, 7) and Keogh and Ratanamahatana (2005, 359).

Theory

Data & methods 00●0 Findings 00000

TIME SERIES CLUSTERING

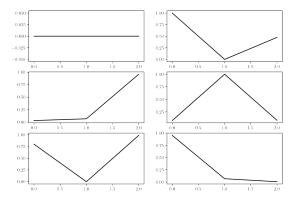


Figure: The obtained six clusters with window length three months.

 \rightarrow Use as dummy set, assign each observation to one cluster

Theory 000 Data & methods 000● Findings 00000

TIME SERIES FORECASTING Adopted from Kotu (2019)

Autoregressive Integrated Moving Average (ARIMA): linear combination of p past observations, $y_t = \theta_0 + \theta_1 y_{t-1} + \theta_2 y_{t-2} + ... + \theta_p y_{t-p}$

- * ARIMA, p = 1
- * ARIMA, optimized
- * ARIMAX, optimized <u>and</u> additional X which is dummy set of extracted clusters

Evaluation score:

* Weighted mean squared error (WMSE): Mean squared error weighted by actual values on outcome, number of protest events

Theory 000 Data & methods 0000 Findings •0000

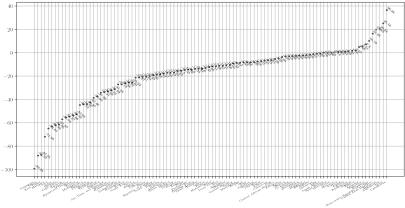
PREDICTION ACCURACY OVERALL

Model	WMSE
ARIMA(1,0,0)	4197.140778
ARIMA(optimized)	3240.739375
ARIMAX	3071.106989

Table: Weighted mean squared error for ARIMA(1,0,0), ARIMA(optimized) and ARIMAX.

Theory 000 Data & methods 0000 Findings 00000

PREDICTION ACCURACY PER COUNTRY



WMSE Percentage Improvement ARIMA vs. ARIMAX

Theory

Data & methods 0000 Findings

Well performing ARIMAX

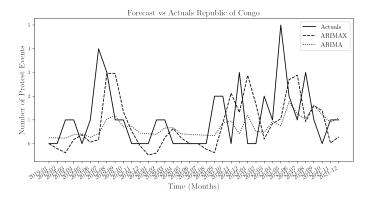


Figure: Predictions (ARIMA and ARIMAX) and actual values for Congo.

Theory 000 Data & methods 0000 Findings

POORLY PERFORMING ARIMAX

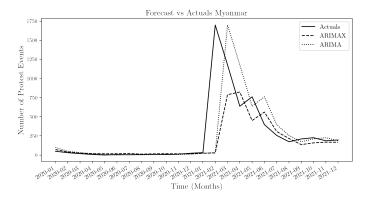


Figure: Predictions (ARIMA and ARIMAX) and actual values for Myanmar.

Theory 000 Data & methods 0000 Findings 0000

THANK YOU

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant agreement no. 101002240).

References

References I

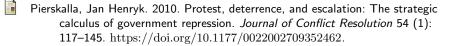
Chadefaux, Thomas. 2021. A shape-based approach to conflict forecasting. International Interactions, 1–15. https://doi.org/10.1080/03050629.2022.2009821.

Davenport, Christian. 2007. State repression and political order. Annual Review of Political Science 10:1–23. https://doi.org/10.1146/annurev.polisci.10.101405.143216.

- Demirel-Pegg, Tijen. 2011. Protest waves, insurgencies, and civil wars: Dynamics of conflict escalation and non-escalation in Kashmir and Assam. Indiana University. PhD diss.
- Keogh, Eamonn, and Chotirat Ann Ratanamahatana. 2005. Exact indexing of dynamic time warping. *Knowledge and Information Systems* 7 (3): 358–386. https://doi.org/10.1007/s10115-004-0154-9.
 - Kotu, Vijay. 2019. *Data science: concepts and practice.* Cambridge, MA: Elsevier/Morgan Kaufmann Publishers.

References

References II



- Raleigh, Clionadh, Andrew Linke, Håvard Hegre, and Joakim Karlsen. 2010. Introducing ACLED: An armed conflict location and event dataset: Special data feature. *Journal of Peace Research* 47 (5): 651–660. https://doi.org/10.1177/0022343310378914.

Tarrow, Sidney G. 2011. *Power in movement: Social movements and contentious politics.* Cambridge, New York: Cambridge University Press.