

The Patterns of Conflict Emergence (PaCE)

Thomas Chadefaux Trinity College Dublin

15 July 2022

* ERC 2022-27

* Trinity College Dublin, Department of Political Science

* Team:

- ***** Political Science
- * Economics
- **Physics**
- * Machine Learning

PaCE

PaCE: Project overview

Stories

Seven point story

Observationsas units of analysis

Sequences in other fields

12854400	tcaaagtaagttagataaacatgatcattcacaggtcagatgtt
	tggactaccagaattgagttacctagtacttctcaattctattt
12854200	taggaaaagttaatgttacggcccaatcacttttttaacagcc
	attgtccactcaaaacgtgacaaatggaggtctaaagggagacc
12854000	cttgtaaatgtattcacatttcattcccaagaaaaatagactga
12052000	aggtttagggtctcaatataaacacacaaagcagatagaagaag
12853800	TCTTTTCTTCATCGTCTTTCCAACCTTCACGTTTTCCTCCACCT
12052600	tcacttattgggtttctttcaattgtgaaacagAGTTTCAATTG
12853600	ACATAGCCAACGCTGGAATCACTCATCTTTGGCTTCCTCCTCCT
12052400	taccaatcttgttactcacgcaatcttcattcctcagGTTACTT
12853400	
12052200	CTGTTATTTCGAAGGTGGGGACTTCCGATGATCGTCTTGATTGGG
12853200	
12052000	GATTCCATGGTTGGAGATTTGATTATGTTCGAGGTTATGCATCT
12853000	aacagtattagtatataagaaacataggttgagataattattta
12052000	ataagaaacataagtcaatgcaatcaataagaaatatataagaa
12822800	
12052600	
12832600	
12052400	TGATAAAGTCTTGCTTGGATACGTTTATATACTTACTCATCCAG
12852400	
12052200	
12022200	GCAAGATGTGGGGAACACTTGTTCCTTCTAATTTTGCTTTAGCTT
12052000	agaaaagtaatcgaatgtatcttcttctttttaataaaacatt
12022000	astaattttaatttaattaastsassatsststststst
12051000	
17021000	Cacaalactyccaaaalcayaacyaallatattattgtagaaga

ttaaaaaaaaaatcattatggtgtacatcacatgtagacaatacttcagaattcatc taccctaacgtctaataaataacaagtactctagcctcttcgttttatgattcctc caaacaacatatattagctccaaatatcattttttcccctagaatattctcaacct atacttgactcattttagagctaggatcagacagagtagattttttgccataactc tgaagaaatatatcagatatgacaaggccgtgtcgtttaggttacgtaactctaca caaaccattcacaatcagacaATGACATCTCTCCATACGTTACTCTTCTCTCTCTCT TATTGTTTCAGgttcgtctttagttttgcttctttacatacacagactctacacac GGAGTCATGGAAGAAGAAGGAGGAGGATTCTACAATTCTCTCCACAACTCCATTGACG TCTCAATCCGTTGCTCCTGAAGgttccatttctgctttactctttacacattcaca ACCGGGAAAGCTATACGATCTAAACAGCTCCAAATACGGTTCAGAGGCGGAACTGA GCTGATATAGTGATTAACCACAGAACAGCTGAGAGGAAAGACGATAAATGTGGATA ATCCTTCCTTTGTCTGCCGCAATGACCCTAAATTTCCCCGGTACCGGAAACCTCGAC CCCTAGAGTTCAGAAAGAGTTGTCCGAATGGATGAATTGGCTTAAAACTGAAATCG TCCATCACCAAATTATACGTTCAGgtaaatcacatatgaattctcaaatatcagac ctattagtatatataagtatcataggttgatagggttatttactactatttagtat agttcactactgattatgtgataaattcctctgtttttggatacacagAATACATC CACCACCAAAGGGATCTTACAGTCTGCTGTCAAAGGTGAGCTTTGGAGACTAAAGG AACGCTGTCACATTCATAGATAACCATGATACATTCAGAACGTGGGTTTTCCCCTTC GAACTCCTTGCATTgtaagtatcattttagtatgtagctatactatttacaactac CATAGAATGGGGGCTAAAAGAGAGCATCTCAAAGCTGGTGGCTATCAGGAACAAAA GCGGATCTCTACTTGGCTATGATTGATGATAAAGTTATCATGAAGATTGGACCAAA ATTCAGGCCTTGACTTTGCTGTCTGGGGAGAAGAAG<mark>TAA</mark>cgcataactcgaatcata ttggcagtatctaaagatatgtataatgaaatataaaatgataaagaatacctaaa .gaaaagagttcaagtgaagaagtgtcaacttgtagaaataagtattggaaagtttc 😗 ccgactcgtataagatttggagccctactaaaatcagaattatgatgtcttaacca agaaaaaaaaagtatggtgggaagtgggaacagttagacaggtaaattcgaataaa

n social sciences

Patterns *

- * Marx: Repeating motif over time
- * Kondratiev waves: alternating intervals of high sectoral growth and intervals of relatively slow growth
- * No patterns
 - * Efficient market hypothesis
 - * Richardson

Does history repeat itself?

PaCE: One Big Question

PaCE: Three questions

Are there patterns in the temporal sequences that lead to conflict? 1.

2. Can we use these motifs to predict conflict?

Can we cluster these patterns to create new / inform existing 3. theories of conflict

Predict...

- Interstate and Civil wars/ conflict
 - Migration flows
- Protests _

-

- Violence
- and more

... using

Distance measures: An example

Methodology: Distance Measures

Dynamic Time Warping Matching

Dynamic Time Warping

Forecasting

* Backward forecasting

* Live forecasting

Theoretical implications 1 Prototypes for theory building

Theoretical implications 2 Fundamental limits to the predictability of conflict events?

Some Preliminary results

Step

MSE

Step

Private and Public Information

Initial projects (ongoing)

- 1. Temporal patterns in migration flows
- 2. Temporal patterns in protest data
- 3. Augmentation for conflict time series
- 4. Reducing uncertainty in conflict events using satellite data 5. Dynamic Synthetic Controls (if time allows)

Temporal patterns in migration flows

Thomas Schincariol & Thomas Chadefaux

Example : Migration flow in Morobo - South Sudan

Study zone - South Sudan

48 regions **

Adm - 2 level

Regional merging if value < 10 * \rightarrow 72 to 48

January 2020 to September 2 ** * 21 point time series

Data Source

* IOM-DTM flow monitoring surveys * 31 key transit points within South Sudan and at its borders

Focus on population leaving their region Push in the "push-pull" model Mostly economic, conflict or climate motivations

Method : Benchmark of autoregressive models

Basic Model

Autoregressive model

$$y_t = c + \alpha * y_{t-1}$$

No parameters no optimization

$$y'_{l} = c + \sum_{i=1}^{p} \alpha_{i} * y'_{l-i} + \sum_{j=1}^{q} \beta_{j} * \epsilon_{l-j}$$

Common Literature model **ARIMA model**

3 parameters (p,d,q)

Dynamic model ARIMAX

$$y'_t - c + \sum_{i=1}^p \alpha_i * y'_{t-i} + \sum_{j=1}^q \beta_j * \epsilon_{t-j} + \gamma_c$$

$$\gamma_{c} = \begin{cases} \gamma_{1}, & class_{1} - 1\\ \gamma_{2}, & class_{2} = 1\\ \gamma_{3}, & class_{3} = 1 \end{cases}$$

5 parameters : 3 ARIMA (p,d,q) **2 DTW classification**

Method : DTW - Classification application

MSE Plots

Mean value of MSE for each South **Sudan regions**

Region forecast examples : Jur River and Renk

Jur River

Renk

Beyond South Sudan : Yemen and Pakistan

- Bari (Somalia), Obock (Djibouti), Najran (South Arabia)
- 49 months time series (Jan 2018-Jan 2022)

Torkham and Chaman points
52 weeks time series

Beyond South Sudan : Yemen and Pakistan

Mean value of MSE for Pakistan and Yemen

• ARIMAX model

ARIMAX model (South Sudan)

ARIMA model

Good results in South Sudan, Yemen and Pakistan *

Apply the method to other topics Climate ** **

Protest **Other ideas?**

*

Conclusion

Project 2 Temporal Patterns in Protest Data

Hannah Frank & Thomas Chadefaux

Thomas Chadefaux

What we observe

what we want to predict

Learning Set

MMMMM / MMMMM

Test set

 $M_{M} \rightarrow M_{M} \rightarrow M_{M$ M = M M M M M M M M M M M $M \sim M M M M M M M \sim M$ M - M M - M M - M M M $\mathbb{W} \to \mathbb{W} \to$

* Data is scarce * One world * Acquiring data is expensive

42

Common methods of dealing with limited data in social sciences

Bootstrapping and Bagging: use subsets of the data. *

Imputation: fill gaps *

Create entirely new dataset: augmentation **

Original

Augmentation

Flipped

Cropped / stretched

Basic augmentation for time series: Flipped series

-

0

Τ

2

as.numeric(df1[obs,])

* History repeats

- **In reverse** *
- * Escalation and de-escalation as mirrors

Augmented Set

MA M $\sqrt{\sqrt{}}$ M_{M} MM MM \mathcal{M} M $-\sqrt{M}$ M M \mathcal{M} WW W M \mathcal{M} M M $M \sim M \sim M \sim M$ $\int \mathcal{M} = \int \mathcal{M} = \int$

Learning set RF / NN / LM

Predict test set

MSE

Augmented Learning set

RF / NN / LM

Predict test set

MSE

Results: double flip

nentation gmentation)

1....

How much of an improvement is that really?

MSE with 80 obs

+ double flip Augmentation

MSE with 100 obs $\mathbb{W} \to \mathbb{W} \to$ $\mathbb{W} = \mathbb{W} =$

More complex augmentation methods

Generative adversarial networks

Random noise

Augmentation: GAN

Fake Seurat painting

Lorem Ipsum Dolor

Results: GAN

Multi-dimensional data – Panel

Other datasets – suggestions?

Todo

Project 4 Reducing Uncertainty In Conflict Events Using Satellite Data

Gareth Lomax & Thomas Chadefaux

Motivation

- News based datasets (e.g., UCDP, ACLED) often contain temporal and geographic uncertainty.
- * Uncertainty is compounded by the severity of violence.
- Datasets do not report quantitative extent of non violent damage.

Contains a wealth of change detection literature. Medium resolution data is well covered under permissive licences. (Very) High Resolution data is expensive, unless you know where to look.

Satellite Imagery?

NASA FIRMS Fire Information For Resource Management Service

Data from MODIS and VIIRS sensors MODIS resolution 1km, VIIRS resolution 375m

MODIS aboard Terra and Aqua EOS, acquisitions at 10:30 a.m. and 10:30 p.m MLT

VIIRS aboard Suomi NPP and NOAA-20

Total acquisitions 8 per day.

NASA FIRMS DASHBOARD OVER AFRICA 12/07/2022

Use Firms Archive Data to identify statistically unlikely fires to reduce uncertainty in conflict data.

Method

- * Ethnic cleansing committed by the Tatmadaw (Military) from 2017 - 2018 lead to large scale displacement and destruction.
- * Approximately 900,000 Rohingya displaced.
- * In Rakhine State 30.8% of events have no exact date. 84% of events have no precise location.
- * Open Source Projects e.g Ocelli Project Seek to reduce this uncertainty.

*

Myanmar

- * Dataset of 613 (620) Rohingya Settlements destroyed between 2017 and 2018.
- * Based on open source very high resolution satellite images (google earth) to identify village burnings manually.
- * Mixture of satellite and aerial imagery.

Ocelli Project

December 27, 2016

October 31, 2019

Google Earth

Google Earth

Green: Ocelli Red: ACLED Blue: UCDP

Uncertainty in UCDP data (Rakhine)

Uncertainty in Ocelli data (Rakhine)

REGION/PROVINCE/AREA

Event data (Ocelli)

Fire data (FIRMS)

- Fire data is highly seasonal due to regular wildfires and agricultural burnings.
- local minima.
- residuals, Seasonally adjusted temporal KDE's.

Method

Extract localised burnings in radius about towns and compare to

Anomaly detection methods compared: Naive KDE's, ARIMAX

Q6-008

Overall performance

Seasonal KDE accuracy:

- Pick a town-day at random. 13% of the time it will fall within an Ocelli window. I.e., a 13% chance of correctly "timing" an event.
- Using the anomalous fires, the same happens 41% of the time

- If we only consider only areas where burning actually took place, then 63%.

* News-based reporting often lacks precision. Also makes realtime reporting impossible * Solution: satellite data. BUT expensive -> need to know where to look

Why it matters

Fires: pros and cons

* Pros:

•

- * go back 20 years
- * cheap
- instantaneous (3 hrs)
- Allow to estimate news-based datasets' underreporting factor

* Cons:

- Limited to events that cause fires
- Low accuracy for now

Next steps: Reflectance

Next steps: Reflectance

Assign fires to closest Ocelli event, as opposed to all within a radius -> accuracy will improve Remove false positives in uninhabited locations Earth mover distance Improve seasonal KDE

Next steps

Dynamic Synthetic Controls: Accounting for Varying Speeds in **Comparative Case Studies**

Jian Cao & Thomas Chadefaux

Research Question

One of the most popular comparative analysis methods, synthetic control, **cannot account for potential different speeds** in time series.

Research Question

One of the most popular comparative analysis methods, speeds in time series.

synthetic control, cannot account for potential different

Can we design a method that can solve this problem?

1. Limitation of Synthetic Control

1. Limitation of Synthetic Control

- 2. Two-Fold Dynamic Time Warping

- 1. Limitation of Synthetic Control
- 2. Two-Fold Dynamic Time Warping
- 3. Simulation Study

- 1. Limitation of Synthetic Control
- 2. Two-Fold Dynamic Time Warping
- 3. Simulation Study
- 4. Re-run Abadie's Analyses

- 1. Limitation of Synthetic Control
- 2. Two-Fold Dynamic Time Warping
- 3. Simulation Study
- 4. Re-run Abadie's Analyses
- 5. Conclusion

Limitation of Synthetic Control

Synthetic Control

The Economic Cost of the 1990 German Reunification

Synthetic Control (Different Speed)

≻

Illustrative Example

Time

Two-Fold Dynamic Time Warping

 Two-Fold Dynamic Time Warping (TFDTW) is a new DTW method that is designed specifically for comparative case studies, and helps them account for different speeds in time series.

- Two-Fold Dynamic Time Warping (TFDTW) is a new DTW method that is designed specifically for comparative case studies, and helps them account for different speeds in time series.
- It is a pre-processing method.

- Two-Fold Dynamic Time Warping (TFDTW) is a new DTW method that is designed specifically for comparative case studies, and helps them account for different speeds in time series.
- It is a pre-processing method.
- It warps time series to match the speed of the target time series.

- Two-Fold Dynamic Time Warping (TFDTW) is a new DTW method that is designed specifically for comparative case studies, and helps them account for different speeds in time series.
- It is a pre-processing method.
- It warps time series to match the speed of the target time series.
- Any comparative case study methods, e.g. synthetic control, can be used after TFDTW as differences in speeds have been removed.

Process of TFDTW

Two-Fold Dynamic Time Warping

• Data generation process (DGP):

$$\mathbf{y}_{i,t} = \sigma_t + \sum_{l=1}^p (\beta_{i,t})$$

• Simulate 1,000 data sets

 $,t,I\mathbf{y}_{i,t-1} + \phi_{i,t,I}\mathbf{x}_{i,t-1}) + \varepsilon_{i,t}$

Simulation Example

Log Ratio = $log(MSE_{w/TFDTW}/MSE_{w/oTFDTW})$

10/17

Re-run Abadie's Analyses

Abadie's Analyses

- German Reunification 1990
- California Tobacco Law 1989
- Terrorism in Basque Country, Spain 1970

Results

Log Ratio = $log(MSE_{w/TFDTW}/MSE_{w/oTFDTW})$

Does TFDTW Change Abadie's Results?

German Reunification - 1990

13/17

Does TFDTW Change Abadie's Results?

California Tobacco - 1989

14/17

105

Does TFDTW Change Abadie's Results?

Basque Country, Spain - 1970

15/17

Conclusion

TFDTW significantly improves synthetic control's ability to account for different speeds in time series.

Conclusion

- TFDTW significantly improves synthetic control's ability to account for different speeds in time series.
- After applying TFDTW in Abadie's analyses, the estimated causal effects are changed.
 - German reunification \downarrow
 - California tobacco law \downarrow
 - Basque country terrorism ↑
- ↓ v ↓